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T H E R M O D Y N A M I C A L L Y  N O N - E Q U I L I B R I U M  B U B B L E  M E D I U M  

S. M. Shugrin* UDC 532.5 

A model is developed for a thermodynamically locally-nonequilibrium two-temperature two- 
velocity bubble medium. The mathematical model is formulated in two stages. In the first stage, 
a quasiequilibrium model is deduced from the variational principle. In the second stage, locally 
non-equilibrium exchange terms are introduced into the equations obtained. From the general 
model thus formulated, one can obtain simpler equations (equations of the theories of long or 
short waves, etc.) using asymptotic and other methods. 

A model for a thermodynamically locally-nonequilibrium two-temperature two-velocity bubble medium 
is developed. The construction is performed in two stages. 

Initially, a quasiequilibrium model, or more precisely, a model that is invariant with respect to reversal 
of time, is constructed on the basis of the variational principle. Similar equations were deduced in [1] (see 
also [2, 3]). However, in [1], the initial hypotheses are needlessly complicated, and, therefore, the final system 
turned out to be cumbersome and difficult to flow. Probably, this is the reason why the consideration in [1] 
is in~mplete: for example, there are no energy-balance equations for individual components (a drawback of 
many models of heterogeneous media) and the energy conservation law for the system as a whole. As a result, 
it is difficult to correctly introduce terms that describe various locally nonequilibrium exchange processes. At 
the given 
stage of development of  the theory of heterogeneous media, it is expedient to seek rational simplification 

- of hypotheses to obtain a system with a most pronounced structure, so that it will be easier to perform 
an analysis of the characteristic features of the equations and their practical use, and to check them. (The 
simplest variant of a two-velocity system is constructed in Sec. 4.) 

At the second stage, locally nonequilibrium exchange terms are introduced into the equations obtained. 
For this, an appropriate Onsager formalism, which is similar to the one described in [4], is postulated (see also 
[5, 6]). The two-stage construction of phenomenologieal models, i.e., a combination of the variational principle 
with subsequent use of an appropriate variant of Onsager formalism, seems to be most optimal methodically. 
Further, from such rather general models, more specific models (equations of the long- or short-wave theories, 
etc.) can be derived by asymptotic or other reasoning. 

1. Descr ip t ion of The rmodynamics .  We consider a two-component bubble liquid that includes: 
(a) a carrier component with density P(1) = const, specific internal energy e(1), specific entropy s(1), and 
temperature TO); in this ease, the differential Gibbs form is 

&(l) = T(l)ds(1); (1.1) 

(b) a bubble component, consisting of spherical bubbles of radius R with volumetric number density of 
the bubbles n; P(2) is the density of the gas (vapor) in a bubble, P(2) is the pressure, ~(2) is the specific internal 
energy, s(2 ) is the specific entropy, and T(2 ) is the temperature; thus the differential Gibbs form for the gas is 
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De(2) = T(2)ds(2) - p(2)d(1/p(2)). (1.2) 

The volumetric concentrat ion of the bubbles is a - ((4/3)~rR3)n. The volumetric densities of the carrier 
and bubble components  are p' = (1 - a )p0)  and p" ---- o t p ( 2 )  , respectively. It is assumed that  the radius and 

concentration of the bubbles are small. The  velocities of the components are denoted by v(i ) = (v~i)) , k = 1, 

2, 3. It is convenient to introduce Galilean 4-dimensional velocity vectors v~i } - (1, v(i)) = (1,v~i), v(i),2 v~i)), 
so that  v[i) = 1. In addit ion,  we assume that  x ~ - t. The  Latin tensor indices take values 1 and 2, and the 
Greek tensor indices take values 0, 1, 2, and 3. 

The motion of a spherical gas bubble at a velocity v(2) in an incompressible medium having a velocity 
v0) gives rise to a per turbed  flow in the medium. The kinetic energy of the flow is 

kper = ] l r R  3 P(1) /~2 + T ' w _= V(l ) - v(2), /~ = D ( 2 ) R -  v(2)~xv = Ot + ~)(2)~xk" 

If the bubbles interact  weakly with one another (which is the case for small R and a),  the volumetric 
density of the kinetic energy of the per turbed flow is 

Kper = kperr~ = otp(1) ( 3  Fl~ 2 4r w--~-~ ) .  (1.3) 

Finally, the  volumetr ic  density of the surface-tension energy is 

estrf = (47rR2)na. (1.4) 

For simplicity, it is assumed tha t  a = const. 
From the definitions it follows that  

_ dr* @(2) 1 1 dp ' .  da  = 1 dp', dR  1 alp' - - - ,  -- dp' + 
P(1) 3 R = ap(1) n P(2) aP(1) ap(2) 

Hence, 3R/R = - ( l l a p o ) ) ~ '  - bin. 
2. V a r i a t i o n a l  P r i n c i p l e .  We assume that  for particles of the  carrier component ,  the  Lagrangian 

coordinates are ~( t , z )  = (~a), and for the bubble component,  they are ~/(t,z~ = (rf) .  By the definition of 
Lagrangian coordinates, we have 

vv O (2.1) D(1)~" = O, D(2)~l" = O, D(O - (i) Ozv. 

�9 We introduce the  functional  

tl ~ I)2 

~oRZ 
We seek a s tat ionary position J1 provided that  equalities (1.1)-(1.4) and the following conservation 

laws are satisfied: 
- -  for  the mass o f  the carr ier  component 

M(]) = O, 

- -  for  the mass o f  the bubble component 

M(2 ) = O, 

- -  for  the entropy of  the carrier component 

So) = 0, 

OQ I~v 
MO) - b'~Tx, L ~ (1)]; (2.2) 

(~ II1[}1/ , M(2) - ~-~';x~[p (2)]" (2.3) 

s o )  = ~-;x~ [p sO)vO)]; (2.4) 
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- - -  for the entropy of the bubble component 

S(2) = 0, 

-- for the number of bubbles 

(~ I I  I/ 
S(2) = ~--;x~[p s(2)v(2)]; (2.5) 

N = 0, N - ~ [nv[2) ] .  (2.6) 

Equations (2 1) define v,k., via derivatives of the Lagrangian coordinates [7]. Using the Lagrange method, �9 :) 
we replace J1 by the function~ 

tl ~ V2 / / (  -,, , , ,  ,/2 = P' + / ,  - ~ -  + Kper  - p'e(1 ) - p"e(2 ) - esuff 
to Rs 

+~'M(I ) + ~"M(2 ) + r ) + r ) + wN} dz dr. 

Here ~', ~", r r and r are the Lagrange multipliers�9 Since the addition of a divergent term does not affect 
the form of Euler equations, ,/2 can be replaced by the following functional, which is more convenient for 
calculations, 

tl 

to _e3 

(1) + -P eO)-P e(2)-e.ff-p DO)~ -p s0)D0)~b -p D(2)~ -p s(2)D(2)r --D(2)w]. 
L v2 .2  r . I t I I . It . . / g  

The Lagrangian L is assumed to depend on ~, z/, p', p", 8' - p'80), s" =__ p"s(2), n, cp', ~p", r r and 
and their derivatives. We denote E ( O  . - 6L/6~*,  E ( , ) .  - 6 L / 6 U ' ,  Ep, - 6 L / 6 p ' ,  E . ,  - -  6 L / 6 s ' ,  . . . ,  where 

6 L / 6~a, . . . are variational deriwtives. 
By the Noether theorem, the invariance of L with respect to spatial shifts leads to the law of 

conservation of the total momentum J = 0 [8], where 

j1  {~E(o"  + p j E i  
- I/ +{~IjE(n),. + pjEc,,, + s]Es,, + n j E .  + ~o]Ew,, + ~bjEr + wiE~, (2.7) 

Here ~ -- a~a/Ox j, etc. After calculations (taking into account the relations for the Lagrange multipliers 
obtained from the Euler equations) we obtain 

J '  = O, j j =  0 { , ~, j . ,, j, j a ~, �9 } 
- Oz~ p v 0 ) v 0 )  t p v(2),~(2 ) + ~ p 0 ) w  ~ '  + Pa~' ; (2 .8 )  

p = (p(2) _ ~ )  _ ,(D ( R ~  _t. 3j~2 w2 _= 
- -~--), k = D ( 2 ) R ,  k = D ( 2 ) R ,  w "  v~',) - v~'2). (2.9)  

Since, by definition, v~i ) = 1, we have w ~ = 0. 
In (2.7), separating terms that refer to the carrier medium, for the medium we obtain the momentum- 

balance equation that includes the a nondivergent term (this is actually a general method for determining the 
momentum of a carrier medium): 

�9 - O f v  ~ �9 a �9 a J~l) =0, g~l) -- ~-;xu ~ ( , )[P'v~,)+~PO)Url]}+~P( ' ) (w[ OvO)~Oxi } + (1 -- coOPoxJ' (2.10) 

[(a [ b) - ~. aib i] is the scalar product of the vectors a, b e R 3. 
t 
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E(2 ) = 

Here E(2 ) _= E - E 0 ) ;  

The momentum-balance equation for the bubble component is similarly constructed: 

�9 ] }  o ( 0 ,  
J~2) =0' J l 2 ) - ~ x v ) ,  (2)[~' ~(2) ~P(]) wJ -~P(D wl Ov(D~-baOx' ] Oz" (2.11) 

Obviously, S/l ) + J[2) = Jj" 
Remark .  Because of the presence of the nondivergent term, it is not clear which relation can be 

correctly called the momentum-balance equation for the component. Apparently, the simple general method 
used above, which is based on the relationship between the definition of the momentum and invariance with 
respect to spatial shifts and on expression (2.7), which follows from the Noether theorem [8], gives the only 
correct definition. The same is true for the energy-balance equations (see below). The invariance with respect 
to the time shifts gives the law of conservation of the total energy E = 0, where [cf. (2.7)] 

- E  = {~E(~), + .. .  + r162 + {T/~'E(,), + . . .  +w,E,,,}. (2.12) 

Here ~ = a~a/at, etc. After calculations we obtain 

Separating terms in (2.12) that refer to the carrier component, we obtain the following energy-balance 
equation for this component: 

E(1 ) = 0, (2.14) 

0 fv" ~ )  a a OP - ,,, [ , '6 , , ,  §  ~ ' 

3. Final System. Thus, the variational principle with the functional J leads to Eq. (2.2)-(2.6), (2.8)- 
(2.11), (2.13), and (2.14). The final system is conveniently written as 

M - 0 ,  J J = 0 ,  E - 0 ;  (3.1a) 

M0) = 0, "]~1) = 0, E0) = 0; (3.1b) 

N ---- 0; (3.1c) 

ed~ + ~-R' w2 1 (  2~ ) 
--  ~ --  P(1) P(2) R P , (3 .1d)  

where M = Mr, ) + M ( ~  -- (O/O,'){p'o5) + r 
Equations (3.1) lead to the law of conservation of the total entropy: 

O , , v -- , v �9 (3.2) S = 0, S - So) + S(~) = ~-~z~t p s(1)v(1 ) .I- p s(2)v(~).~. 

The following relations are valid: 

EO) = .~(~) - T(1)s(~) - " - ~ " ) " ' 0 )  + v(1)'](1) + To)S0);  (3.3) 

1 v2 
i i %T(2)S(2) + ( N .  (3.4) p(DPMo) + (7(2,--'~-)M(2) +v(2)J(2) 

~(2) =-q2) -T(2)s(2)+p(2)/p(2); (3.5) 
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c - l { o l ( P -  p(2) - P(l)W-2-2 ) + Kper-t-r �9 (3.6) 

Relations (3.3) and (3.4) lead to the fundamental equality 

J J CN; (3.7) E _. _ + v(2)J(2 ) + T(2)S(2) + 
\ 

7(,) - ~(,) - TO)s(,) + P/P(,)" (3.8) 

Relation (3.7) is a representation of the second law of thermodynamics for the bubble medium 
considered (see also [8]). In the derivation of (3.4), the Rayleigh equation (3.1d) was assumed to be identically 
satisfied, i.e., it was regarded as a definition of P. We note that 7(,) and 7(2), defined by expressions (3.8) and 
(3.5), axe in essence the specific thermodynamic Gibbs potentials. Relations (3.3) and (3.4) lead to a second 
fundamental relation, which supplements (3.7): 

l____E_ ----1 {I~(2,- "-~)" }m- T+2)tt~2)ZJ "1-T(2){ T--~I) (F(I' - # )  S =  T(2) 

_TI2)CF(2)_y_~)}M(,, ~ 1...L_ j .  I~T) j ~jj .F{T(1,1 TI2,}E(,)_ i N .  (3.9) -- T(1)v(1) T(2) (2)/ <1) T(2) 

rO) =_. ~(') _ TO)s(') + T(,) P (3.10) T(2) p(,), r(2) -= 7(2)" 

Relation (3.9) implies, in particular, that if equalities (3.1) are valid, the closing conservation law (3.2) 

Here 

is obeyed. 
For T(1) = T(2), we have F(1) = ~(1). In the general case of a two-temperature medium [T(1 ) ~ T(2)], 

there is an important difference between I'(1 ) and 7(1). 
4. Simplified Sys tem.  If w is small, we have w2/4 ~Y. (3/2)R 2 and, instead of (1.3), we can write 

3 "2 (4.1) K p~ - a p o ) -~ R . 

JJ = 0, E = 0; 

M 0 )  = 0, J~l) = 0, E0)  = 0; 

N = 0 ;  

As a result, we come to the system 

M = 0 ,  

p ~ . F 3 R 2 =  1 / 2o" ) p(1) p(2) ~ P , 

where 
0 , , ~  i , , ~ . . J  •  

JJ ==" Oz" lP vO)vo) + P v(2)~(2) ~- 

E = ~ { p  ~0) + P"~(2) + ~s,rf + v - ~ -  

+(1 a )p]  --v k [ "  [e Kper + es,rf + ctP] }; - + (2)[P ~ (2, + . ~ )  + 

(4.2a) 

(4.2b) 

(4.2c) 

(4.2d) 

Kper is defined by formula (4.1); 

�9 0 , ~, j OP 
- + ( 1  - E 0 )  -- ~-;x~ ~ v(,)p - 
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Equations (4.2) lead to the closing conservation law 

S = 0. (4.3) 

Here and below, M(0 , M, S(i), and S have the same meaning as in Sec. 3. 
The following relations, which are similar to (3.3) and (3.4), are valid: 

v 2 
= - + v0)J0) + T0)S0); (4.4) 

1 v2 
E(2) p(D PM(D Jr ('/(2) - - ~ )  M(2) 1 J = - + v(2)J(2 ) + T(2)S(2 ) + (N. (4.5) 

Here 7(2) is defined by formula (3.5); E(2 ) m E - E0); 

( - l{ct( P - P(2)) Jr gper Jr $sud} (4.6) 
n 

[cf. (3.6) and (4.6)];/(per is taken according to (4.1). As in Sec. 3, it is assumed that the Rayleigh equation 
(4.2d) is identically satisfied. Relations (4.4) and (4.5) lead to 

v 2 

s =  Tr 

1 (F(2 , _ v ~ 2 ) , ] .  a _ ~  1 j _ 1 i ),,1 Jr(T(1) 1 }E(1 , _ a N  (4.7) 
T(2 > T )  f "vx(1) i, T--~I) U<l) T(2) u(2) 1 '~<1) T(2 ) T(2 ) " 

Here F(0 is obtained from (3.10). Comparison of (3.9) and (4.7) shows that these expressions coincide with 
accuracy up to the definition of (. When expressions of the form (3.9) coincide, we deal with structural 
isomorphism of the systems. Thus, systems (3.1), (3.2) and (4.2), (4.3) are structurally isomorphic with 
accuracy up to the definition of (. Structurally isomorphic systems have many similar thermodynamic 
properties (see also Secs. 5-9) .  

5. Onsager  Formal i sm.  When the temperatures and some other characteristics of the components 
are not equal, local thermodynamic nonequilibrium takes place and locally nonequilibrium exchange processes 
occur. In a first approximation, they can be described phenomenologically using Onsager formalism, which 
is based on relations that are similar to (4.7). For the class of exchange processes of interest, we give the 
axiomatics of Onsager formalism in a similar manner as was done in [41 for diffusion processes (see also [5, 
6]). We assume that at a point (t, z), the state of the physical system considered is specified by the set of 
parameters (us) _-- u, a = 1 , . . . ,  m and the dynamics of "reversible" processes is described by the differential 
equations 

L#[u] = O, fl = I , . . .  ,m. (5.1) 

"Reversibility" means that system (5.1) is invariant with respect to reversal of time, i.e., the 
transformation t --* - t .  It is assumed that each of Eqs. (5.1) represents a law of conservation or balance 
of mass, momentum, and energy (and generally, other important physical quantities, for example, angular 
momentum) for the system as a whole and its individual components. A corollary of (5.1) in this case is the 
differential law of conservation of the total entropy 

S = O .  (5.2) 

It is assumed that the following relation, which is similar to (4.7), holds: 

q#L#[u] = S. (5.3) 

Ou~/Ox ~'. The quantities q# are called Here q# depend on u a and, possibly, on the derivatives Ou =_ u,, - 
integrating factors. 
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R e m a r k .  In [9], we considered the classical situation in which q# = q depended on u only. In this 
case, it was required that  the mapping u --* q(u) be locally one-to-one, i.e., the equation q(u) = q should 
be uniquely solvable locally and the inverse mapping u(q) should be defined locally. If q = q(u, au), then, 
apparently, a certain analog of the condition of unique solvability will also be useful here, but it is not clear 
how it should be exactly formulated. 

Furthermore, it is assumed that  the system of conservation laws and/or balance equations (5.1) is 
an Onsager system in the sense of [4], i.e., the set of integrating factors ( q l , . . . , q m )  can be written as 
a set (z ] , . . .  ,zk), where, for all orthogonal transformations of space R s that  form the group O(3), each 
zi is transformed by a tensor rule, i.e., it represents a certain 0(3) tensor (scalar, vector, . . . ) .  Thus, 
for (4.2), the set of integrating factors [see (4.7)] includes five 0(3) scalars: -(1/T(2)){F(2 ) - v~2)/2}, 

l/T(2 ), -{(1/T(1))(F(1 ) - V~l)/2 ) - (1/T(z))(F(2) - v~2)/2 )}, {l/T(1 ) - 1/T(2)} , and -~/T(2 ) and two vectors: 

- ( l /T(2))v i2  } a n d . - { ( l / T 0 ) ) ~ l  ) -(11T(2)lvi2)}. 
The introduction of terms that  describe locally nonequilibrium exchange processes within the 

framework of Onsager formalism is performed as follows. Equations (5.1) are replaced by the equations 

L#[u] = A#~qv. (5.4) 

Multiplying (5.4) by q~ and taking into account (5.3), instead of (5.2) we obtain 

S = (9, 0 - A#Tq/tq. r >t O. (5.5) 

The matrix A _-- [A #~] will be called an Onsager matrix. It should have the following properties: 
(a) symmetry:. A #'r = A ~#, 
(b) dissipativitbr A >t 0, 
(c) O is a Galilean invariant because we are interested in equations that are invariant with respect to 

a Galilean group. 
Along with the general conditions (a)-(c), additional restrictions on A #~ can result from the specificity 

of the physical system considered or from the requirements of simplicity. For example, for elementary exchange 
processes, the matrix A usually has rank 1 (see Secs. 6-9). If q~ are scalars (Galilean invariants), the matrix A 
can be diagonal and the right sides of (5.4) correspond (for each ~) to a specific elementary process. Generally 
this is not the case. 

Let us consider the equations of Secs. 3 and 4. Assuming that  the total masses, momentum, and energy 
are conserved , we examine the equations 

M=0,  

MO) = mo) ,  

JJ = 0, E = 0; 

Ji l)  = f(~)' E(1) = h(1); 

N = l ,  

(5.6) 

(5.7) 

(5.s) 

where m(i), f~), ho) ,  and 1 have an Onsager structure that  is similar to the right side of (5.4). 
Like (5.7), we write M(2 ) -- m(2), where, according to (5.6), m0)  + m(2 ) -- 0 (and the same for the 

remaining relations), i.e., E(2 ) - h(2) and E(2 ) _ E - E0).  Therefore, h(l ) + h(2 ) -- 0, and m(1), m(2 ), h(1 ), 
and h(2 ) have an Onsager structure (5.4), i.e., they are linearly expressed in terms of the integrating factors qT- 

Equations (5.6)-(5.8) lead to 

s = e ;  (5.9) 

(5.10) 

---- - - 2  1. T~2)(F(2) ~ ) t  m(1) 

T(1 ) T(2)) f/l) "{- (T(1) Y(2) Y(2)" 
We consider various elementary processes. 
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6. Heat  Exchange.  Let m(1 ) = 0, f(1) = 0, and 1 = 0. By virtue of the symmetry conditions (a) (see 
Sec. 5), there is only the possibility h0) ,-~ (I /T0) - 1/T(2)}, so that 

h0) _= - n a A T ,  A T  -- :I'(1) - TOp (6.1) 

The Onsager matrix is a diagonal matrix and, according to (5.9) and (5.10), we have 

O = n a (AT)2, ( e  ~ O) r a ) 0. (6.2) 
Tcl)Tc2) 

7. Fr ic t ion be tween  t he  Components .  In the derivation of expression (1.3) for/(per, it was assumed 
that the flow in a neighborhood of a bubble is potential. Therefore, it is physically meaningless to introduce 
friction between the components in the model of Sec. 3. However, it is possible to consider a class of models 
for different types of local flows, and the following will be valid if the structure of the integrating factors, i.e, 
the structure of (5.9) and (5.10), remains unchanged. 

Linear friction is characterized by the conditions m(1 ) - 0, l - 0, and 

f~,) - -nACre1)- ~2) )=  -nAur/" (7.1a) 
/ /  

Assuming that v = (1 - a~)v(1 ) + Bey(2), ~ =_- p /p ,  1 - a~ = p ' /p ,  p - p' + p", and 1 / T  =- ~ / T ( D  + (1 - a~)/T(2), 
we have 

( v,l, v,2,~ 1 1 1 )v" 
-- = -~w- { (7.2) 
T<I) § TC2) J ~('(1) T('2) 

Let 

h0) = -nA(v I ,.,,). 
Taking into account (7.2), we obtain 

f~l) nAT(-~, )  uiu' ~' + nATv'/{ T~I , 1 } ,  
--" ~ "I" T(2) ~ .T(2) 

h,l) = n A T Q ( ~ 1 )  v~2) 

? 

T~I) + T(,)' + nATv2(T~)~ T~)}" 1 

(7.1b) 

that 
Thus, the Onsager matrix is symmetric and has rank 1 but it is not a diagonal matrix. Next, we find 

e = nAw2/T, (e >i o) =r (A i> 0). (7.3) 
To what extent does the expression (TAb) for h uniquely defined? Let 

h0) = - n A ( v  [ w) + h0. (7.4) 

From (7.1a) and (7.4) and the symmetry condition we obtain 

z 1 1 }; (7.5) 
h ~  (Til) T(2) 

nA U) 2 Z 
e = -f. + (TO)T(2))2AT2. (7.6) 

Comp son of (7.4)-(7.6) with (6.1), (6.2), (7.1b), and (7.3) shows that for = # 0, expressions (7.1a), 
(7.4), and (7.5) describe two elementary processes, friction and heat exchange, and the Onsager matrix has 
rank 2. 

8. Format ion  of  New Bubbles.  If I new bubbles that appeared axe of the same sort as those 
considered, i.e., if they have the same mass, velocity, etc., then, accordingly, the mass, momentum, and 
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energy of the bubble component increase and those of the carrier medium decrease. Since the total mass, 
momentum, and energy are thus conserved in this case, Eqs. (5.6) remain valid and, hence, 

4 
m(1 ) = -p l ,  p = ~ ~rR3p(2); 

f~l) = PV~2)I; 

(8.1a) 

(8.1b) 

(SAc) 

(8.1d) 
h(1 ) = -AI ;  

N = I ,  

where, for the simplified model of Sec. 4, we have A = (e2 + v~2)/2)p + (4/3)~rRap(1)(3/2)R 2 + 4~rR 2a. 
According to (5.4), 1 has an Onsager structure (1 = A'rq.r), where q~ axe integrating factors. Relation 

(8.1) and the symmetry conditions of the Onsager matrix yield 

1 = - ( A K ;  

1 w 2 

T(1) 2 ' 

(8.2) 

(8.3) A K  = Ae _ As + T(2) PJ 

where Ae -~ e(1)-e(2), A8 _~ 8(1)-8(2), A(1/p) - l /p(1)- l /p(2) ,  e(1 ) = e0) , and e(2 ) - - -~  E(2)-~-(Kper-~-gsurf)/p n. 
Obviously, e(2 ) can be treated as the total "internal" energy calculated with allowance for the 

perturbations produced by the bubbles and the surface-tension energy. 
It is of interest to compare (8.3) with the classical differential Gibbs form for equilibrium 

thermodynamics: 

T is = d~ + Pd(1/p). 

Hen ce ,  

- d~ + T p]  = 0. (8.4)  

The expressions in square brackets in (8.3) and (8.4) are similarly constructed with a correction in 
(8.3) for the final differences and two-temperature nature. As before, the dissipativity condition gives ~/> 0. 

Apparently, ( depends greatly on the sign of AK.  In the simplest variant it is possible to set 

{(+> 0, i f A K > 0 ,  
-- 0, if A K  ~< 0. 

If A K  < 0 and r > 0, bubbles of the sort considered disappear (turn out to be thermodynamically 
unstable). Actually, this most likely means that such bubbles collapse. A fuller and more correct description 
of this phenomenon is possible in a phenomenological model that includes several different sorts of bubbles 
and in the rest is constructed similarly to the model described here. 

According to the model of Sec. 3, for I we have a more cumbersome expression but it is generally 
constructed in a similar manner as (8.2) and (8.3). 

9. Evapora t ion  and  Condensa t ion .  Up to this point, the principles of Onsager formalism coupled 
to simple and natural physical reasoning uniquely determine the exchange terms for the elementary process in 
Eqs. (5.7) and (5.8) with accuracy up to one non-negative factor (in principle, the latter cannot be determined 
at the phenomenological level of reasoning and should be determined from experiments). In the case of 
evaporation, the situation is different. Here, generally speaking, it is possible to adopt different hypotheses 
to specify the elementary process, and it is difficult to tell beforehand which of them is most exact. Below, 
we formulated the simplest hypothesis that only the mass of the bubble changes in the process considered, 
and the remaining characteristics vary insignificantly (the quasistationarity hypothesis). More specifically, the 
hypothesis is as follows [cf. (8.1)]: 

M0) = m0),  M(2) = m(2) = - m 0 ) ;  (9.1a) 
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f~x) = -v~2)m(2) = v~2)mo); (9.1b) 

v~2) '~ ho) = (e(2) + -~-)m(1); (9.1c) 

N = O. (9.1d) 

Here m0) has an Onsager structure (5.4), where qv are integrating factors which enter (5.10) [or (3.9) and 
(4.7) for the total and simplified systems, respectively]. The symmetry condition for the Onsager matrix leads 
to the expression 

m(l ) = -R~AG, (9.2) 

where 

Apparently, ~v depends significantly on the sign of AG. 
In the one-temperature (T(I) ,-, T(2) "" T) and one-velocity (w ,~ 0) limit "/(I) "~ ~(I) - Ts(1) + P/P(1), 

and 7(2) "~ e(2) -Ts(2) + P(2)/P(2), relation (9.2) lea~Is to the following natural expression for the rate of phase 
transition: m ~ -n~AT/T, where A'y - ~/(1) - "Y(2). 

From (5.9), (5.10), (9.1), and (9.2) it follows that O = na~(AG) 2 and O >i 0 r ae i> 0. For the 
simplified model of Sec. 4 we also use expressions (9.1) and (9.2). 

Certainly, in this Section, as in Sec. 8, it is assumed that the carrier medium and the bubbles are 
formed by the same substance, which can exist in two states - -  a liquid state (the carrier medium) and a 
vapor state (the bubbles), so that evaporation and condensation are treated as phase transitions. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 96-01- 
01641). 
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